

Soils: The mothers of forests Forests: The mothers of soils

Soil formation

Parent Material = The Roch that is weathering to form soil.

Weathering = Is the birchemical process that involves destruction and simple in the simple of the sinterest of the simple of the simple of the simple of the simple o

involves destruction and synthesis -s Rocks are broken down into smaller and Smaller fragments based on their constituent materials (mineral)

Chemical granks: frev Minerals are altered at accombazan through chemical reactions and solvents are synthesized & Physical Disintegration -> Rocks browning inte smaller picces

rocks/ bivlogy)

Disagh mechanical action (Water, wind, expansion,

Rock texture	Light-co	olored mineral (e.g., feldspars, musc	(e.g., hornbl	olored minerals ende, augite, biotite
Coarse	Granite	Diorite	Gabbro	Peridotite Hornblendite
Intermediate	Rhyolite	Andesit	Basalt	
Fine	Felsite/Obsidian		Justin	
			Basalt glass	

Roch texture determinas

1) Item quickly material weathers

1 SA

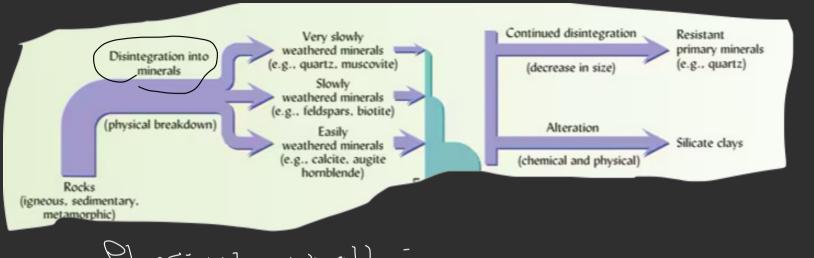
1 SA

2) Influence Soil particle Size

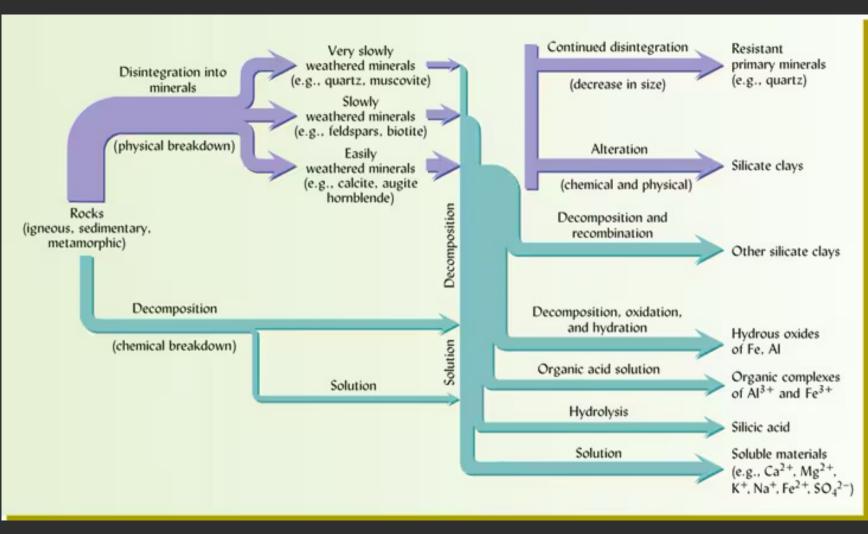
	Type of	ROCK
Dominant Mineral	Sedimentary	Metamorphic
Calcite (CaCO ₃)	Limestone	Marble
Dolomite (CaCO ₃ ·MgCO ₃)	Dolomite	Marble
Quartz (SiO ₂)	Sandstone	Quartzite
Clays	Shale	Slate
Variable, silicates	Conglomerate ^a	Gneiss ^b
Variable, silicates		Schist ^b
Small stones of various mineralog	rical makeup are cemented in	ito conglomerate

^aSmall stones of various mineralogical makeup are cemented into conglomerate.

^bThe minerals present are determined by the original rock, which has been changed by metamorphism. Primary minerals present in the igneous rocks commonly dominate these rocks, although some secondary minerals are also present.


Mineral found

Mineral synthesized through chemical weathering


Primary Minerals		Secondary Minerals		
9-1		Goethite	FeOOH	Most resistant
		Hematite	Fe ₂ O ₃	A
		Gibbsite	$Al_2O_3 \cdot 3H_2O$	
Quartz	SiO ₂			
		Clay minerals	Al silicates	
Muscovite	KAl ₃ Si ₃ O ₁₀ (OH) ₂			
Microcline	KAlSi ₃ O ₈			
Orthoclase	KAlSi ₃ O ₈			
Biotite	KAl(Mg,Fe) ₃ Si ₃ O ₁₀ (OH) ₂			
Albite	NaAlSi ₃ O ₈			
Hornblende ^a	$Ca_2Al_2Mg_2Fe_3Si_6O_{22}(OH)_2$			
Augitea	Ca ₂ (Al,Fe) ₄ (Mg,Fe) ₄ Si ₆ O ₂₄			
Anorthite	CaAl ₂ Si ₂ O ₈			
Olivine	Mg,FeSiO ₄			
		Dolomite ^b	CaCO ₃ ·MgCO ₃	
		Calcite ^b	CaCO ₃	↓
		Gypsum	$CaSO_4 \cdot 2H_2O$	Least resistant

^aThe given formula is only approximate since the mineral is so variable in composition.

^bIn semiarid grasslands, dolomite and calcite are more resistant to weathering than suggested because of low rates of acid weathering.

Physical weathering - Temperture, differential heating and earling of minerals > Extoliation S Wind, Ice, Water & Freeze; thow S Round rocks - Biologius processes in physical determina

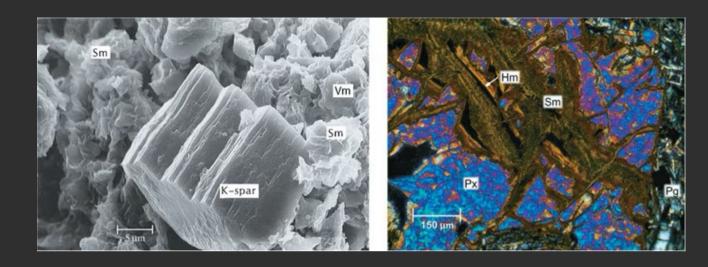
Exfoliation

Physical Weathering (3 Water od win

Wind +

Waher

Cyben, ca)


Tcc

3.02.cal

Always happens Chemical Weathering! faster in the presence of water -s Hydration Hzc water hinds do
Solution In tock Mineral, + 9 HzG -5 Fe 15 5 Fe, 3 Fessingly te Hem matite

Hydrolysis

- Water splils into hydrogen and hydroxy I groups and hydrogen relpaces a cation Microclime that centains h-, rolysis KA15;308 + HZO = HAIS;308

Periodic Table

